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Abstract

An output-feedback approach to model predictive control that combines state estimation and control into a single min-
max optimization is introduced for discrete-time nonlinear systems. Specifically, a criterion that involves finite forward and
backward horizons is minimized with respect to control input variables and is maximized with respect to the unknown initial
state as well as disturbance and measurement noise variables. Under appropriate assumptions that encode controllability and
observability, we show that the state of the closed-loop remains bounded and that a bound on tracking error can be found for
trajectory-tracking problems. We also introduce a primal-dual interior-point method that can be used to efficiently solve the
min-max optimization problem and show in simulation examples that the method succeeds even for severely nonlinear and

non-convex problems.
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1 Introduction

Online optimization has become a ubiquitous approach
for solving control and estimation problems in both
academia and industry. This is largely due to the ability
to explicitly accommodate hard state and input con-
straints in online optimization techniques. Because of
this, an especially popular online optimization control
technique called model predictive control (MPC) is used
in numerous industrial applications (Qin & Badgwell,
2003), and, consequently, much effort has been devoted
to developing a stability theory for MPC (see e.g. Ca-
macho & Bordons (2004); Griine & Pannek (2011);
Morari & H Lee (1999); Rawlings (2000); Rawlings &
Mayne (2009)). An overview of recent developments can
be found in Mayne (2014).

MPC involves the solution of an open-loop optimal con-
trol problem at each sampling time. Each of these opti-
mizations results in a sequence of future optimal control
actions and a sequence of corresponding future states.
The first control action in the sequence is applied to the
plant, and then the optimization is solved again at the
next sampling time. MPC has historically been popu-
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lar for problems in which the plant dynamics are suffi-
ciently slow so that the optimization can be solved be-
tween consecutive sampling times. However, as available
computational power increases and optimization algo-
rithms improve in terms of speed, MPC can be applied
to broader application areas.

MPC is often formulated assuming that the full state
of the process to be controlled can be measured. How-
ever, this is not possible in many practical cases, so the
use of independent algorithms for state-estimation, in-
cluding observers, filters, and moving horizon estimation
(MHE), as discussed, i.e., in Rawlings & Bakshi (2006),
is required. Of these methods, MHE is especially attrac-
tive for use with MPC because it can be formulated as a
similar online optimization problem that explicitly han-
dles constraints. Solving the MHE problem produces a
state estimate that is compatible with a set of past mea-
surements that recedes as the current time advances.
This estimate is optimal in the sense that it maximizes
a criterion that captures the likelihood of the measure-
ments. By receding the set of measurements considered
in the MHE optimization, one maintains a constant com-
putational cost for the optimization.

In this paper, we propose an approach to combine MPC
and MHE into a single optimization that is solved online
to construct an output-feedback controller. To account
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for the uncertainty that results from unmeasured dis-
turbances and measurement noise, we replace the min-
imization that is used in classical MPC by a min-max
optimization. In this case, the minimization is carried
out with respect to future control actions, and the maxi-
mization is taken with respect to the variables that can-
not be measured, namely the system’s initial state, the
unmeasured disturbances, and the output measurement
noise. The criterion for this min-max optimization com-
bines a term that captures the control objective and a
term that captures the likelihood of the uncertain vari-
ables, resulting in essentially the summation of an MPC
criterion with an MHE criterion.

The main technical contribution of this paper addresses
the stability of the proposed combined MPC/MHE ap-
proach. We show that the proposed output-feedback con-
troller results in closed-loop trajectories along which the
state of the process remains bounded, and, for track-
ing problems, our results provide explicit bounds on
the tracking error. These results rely on three key as-
sumptions: The first assumption requires the existence
of saddle-point equilibria for the min-max optimization,
or equivalently, that the min and max commute. In prac-
tice, this assumption can be viewed as a form of ob-
servability of the process. The second key assumption
requires the optimization criterion to include a termi-
nal cost that is a control ISS-Lyapunov function with
respect to the disturbance input. This type of assump-
tion is common in classical state-feedback robust MPC.
The final observability assumption essentially requires
that the backwards horizon is sufficiently large so that
enough information about the initial state is obtained
in order to find past estimates that are compatible with
the dynamics.

A second contribution of this paper is a new primal-dual
interior-point algorithm that can be used to compute
the saddle-point equilibrium that needs to be solved for
online at each sampling time. This algorithm relies on
the use of Newton’s method to solve a relaxed version of
the Karush-Kuhn-Tucker (KKT) conditions associated
with the coupled optimizations that define the saddle-
point equilibrium. As in classical primal-dual methods,
we replace the equality to zero of the complementary
slackness conditions by equality to a positive constant p
that we force to converge to zero as the Newton itera-
tions progress. In practice, the algorithm will stop with
a positive value for u, but we show that this still leads
to an e-saddle-point, where € can be explicitly computed
and made arbitrarily small through the selection of an
appropriate stopping criterion.

1.1 Related Work

State-feedback MPC is a mature field with numerous
contributions. Particularly relevant to the results in this
paper is the work on the so-called robust or min-max

MPC, which considers model uncertainty, input distur-
bances, and noise (Bemporad & Morari, 1999; Campo &
Morari, 1987; Lee & Yu, 1997; Magni, De Nicolao, Scat-
tolini & Allgéwer, 2003). Min-max MPC for constrained
linear systems was considered by Scokaert & Mayne
(1998) and Bemporad, Borrelli & Morari (2003), and a
game theoretic approach for robust constrained nonlin-
ear MPC was proposed by Chen, Scherer & Allgéwer
(1997). More recent studies of input-to-state stability of
min-max MPC can be found in Lazar, Munoz de la Pena,
Heemels & Alamo (2008); Limon, Alamo, Raimondo,
de la Pena, Bravo, Ferramosca & Camacho (2009); Rai-
mondo, Limon, Lazar, Magni & Camacho (2009). These
works focused on state-feedback MPC and did not con-
sider robustness with respect to errors in state estima-
tion. A novelty of the work presented in this paper is the
reliance on saddle-point equilibria, rather than a sim-
ple min-max optimal, which we found instrumental in
establishing our stability results.

Fewer results are available for output-feedback MPC.
An overview of nonlinear output-feedback MPC is given
by Findeisen, Imsland, Allgéwer & Foss (2003) and
the references therein. Many of these output-feedback
approaches involve designing separate state estimator
and MPC schemes. Several of the observers, estima-
tors, and filters that have been proposed for use with
nonlinear output-feedback MPC include an extended
Kalman filter (Huang, Patwardhan & Biegler, 2009),
optimization based moving horizon observers (Michal-
ska & Mayne, 1995), high gain observers (Imsland,
Findeisen, Bullinger, Allgower & Foss, 2003), extended
observers (Roset, Lazar, Nijmeijer & Heemels, 2006),
and robust MHE (Zhang & Liu, 2013). In contrast to
solving the estimation and control problems separately,
the formulation of our combined MPC/MHE approach
as a single optimization facilitates the stability analysis
of the closed-loop without the need for a separation
principle for nonlinear systems.

Results on robust output-feedback MPC for constrained,
linear, discrete-time systems with bounded disturbances
and measurement noise can be found in Mayne, Rakovi¢,
Findeisen & Allgdwer (2006, 2009), where a stable Lu-
enberger observer is employed for state estimation and
robustly stabilizing tube-based MPC is performed to
control the state of the observer. Alternatively, in Sui,
Feng & Hovd (2008), MHE is employed for state esti-
mation and is combined with a similar tube-based MPC
approach. These approaches first solve the estimation
problem and show convergence of the state estimate to
a bounded set and then take the uncertainty of the state
estimate into account when solving the robust MPC
problem. The work of Lofberg (2002) combines an esti-
mation scheme, which provides a guaranteed ellipsoidal
error bound on the state estimate, with a min-max MPC
scheme for estimation and control of linear systems with
bounded disturbances and measurement noise.



During the same time that many important results on
MPC were developed, parallel work began on MHE. The
work of Allgéwer, Badgwell, Qin, Rawlings & Wright
(1999) gives a tutorial overview and background of both
MPC and MHE as well as methods that can be used
to solve these optimization problems. Useful overviews
of constrained linear and nonlinear MHE can be found
in Rao, Rawlings & Lee (2001) and Rao, Rawlings &
Mayne (2003) where, with appropriate assumptions re-
garding observability, continuity, and an approximate
arrival cost, the authors prove asymptotic stability as
well as bounded stability in the presence of bounded
noise.

More recent results regarding MHE for discrete-time
nonlinear systems are given by Alessandri, Baglietto
& Battistelli (2008), in which the authors minimize a
quadratic cost that includes the standard output error
term as well as a term penalizing the distance of the
current estimated state from its prediction. The authors
prove boundedness of the estimation error, when con-
sidering bounded disturbances and measurement noise,
and convergence of the state estimate to the true value
in the noiseless case. Even more recent work on robust
MHE for nonlinear systems appeared in Liu (2013),
where first a high-gain observer is used to bound the
estimation error, and then that bound is used to design
a constraint for incorporation in an MHE problem. This
formulation seems to reduce the sensitivity of the per-
formance of MHE to the accuracy of the approximate
arrival cost, and boundedness of the state estimate is
proven when the noise is bounded.

The optimization algorithm proposed here is heavily in-
spired by primal-dual interior-point methods (Wright,
1997b) that have been very successful in solving convex
optimizations (Boyd & Vandenberghe, 2004). The use
of interior-point algorithms to solve MPC problems is
discussed by Rao, Wright & Rawlings (1998), and ad-
ditional early work on efficient numerical methods for
solving MPC problems can be found in Biegler (2000);
Biegler & Rawlings (1991); Wright (1997a). An overview
of the numerical methods available for solving the op-
timization problems that arise in nonlinear MPC and
MHE is given by Diehl, Ferreau & Haverbeke (2009),
whereas the more recent work Wang & Boyd (2010) is
focused on the development of fast dedicated solvers
for MPC problems. A recent survey on sensitivity-based
nonlinear programming methods for solving MHE and
MPC problems is given in Biegler (2013). In de la Pena,
Alamo, Ramirez & Camacho (2007), the authors specif-
ically consider numerical methods for solving min-max
MPC as a quadratic program, and robust dynamic pro-
gramming for min-max MPC of constrained uncertain
systems is considered by Diehl & Bjornberg (2004). Fi-
nally, the method that is described in Section 5 is directly
inspired by the primal-dual interior-point method for a
single optimization described in Vandenberghe (2010).

The combined MPC/MHE approach considered here
was introduced for the first time in the conference paper
by Copp & Hespanha (2014) with neither a stability
proof nor a numerical algorithm that could be used to
compute the required saddle-point equilibria.

Paper Organization

The remainder of this paper is organized as follows: In
Section 2 we formulate the estimation and control prob-
lem, and in Section 3 we analyze its closed-loop stabil-
ity. In Section 4, we discuss the computation of the op-
timal control through the solution of a pair of coupled
optimizations, and in Section 5 we present a primal-dual
interior-point method that can be used to solve these
optimizations. Finally, we use this method to simulate a
nonlinear example in Section 6 and discuss conclusions
and future work in Section 7.

2 Problem Formulation

This paper considers the control of a time-varying non-
linear discrete-time process of the form

Tip1 = fe(we,ue, di),  ye = ge(we) + 1y, VL€ Zzg (1)

with state x; € X < R". The inputs to this system
are the control input uy that must be restricted to the
bounded set U < R"™, the unmeasured disturbance d;
that is known to belong to the bounded set D < R™4,
and the measurement noise n; that is known to belong to
the bounded set N'  R™". The signal y; € R™ denotes
the measured output that is available for feedback. The
control objective is to select the control signal u; € U,
Vt € Zxo, so as to minimize a criterion of the form

ict(xt,ut,dt)—im(nt)—i:pt(dt), (2)
t=0 t=0 t=0

for worst-case values of the unmeasured disturbance d; €
D, Vt € Zxp, and measurement noise n; € R, Vt €
Z=o. The functions ¢;(-), n:(-), and p¢(-) in (2) are all
assumed to take non-negative values. One can view the
terms pi(-) and 7;(-) as measures of the likelihood of
specific values for d; and n;. Then, the negative signs in
front of p;(-) and 7;(-) penalize the maximizer for using
low likelihood values for the disturbances and noise (low
likelihood meaning very large values for p;(-) and n:(-)).

To better understand (2), it is also useful to note that
boundedness of the criterion (2) by a constant v guar-
antees that

o8]

Y culwn und) <7+ mn) + Y o). (3)
t=0 t=0

t=0



While the results presented here are general, the
reader is encouraged to consider the quadratic case
co(wg,ug, de) = ae]* + Juel?, me(ne) = ||, pu(dy) =
[d¢|? to gain intuition on the results. In this case, (3)
would guarantee that the state z; and input w; are /o,
provided that the disturbance d; and noise n; are also
{5. This would mean that the closed-loop has a finite
lo-induced gain.

2.1 Finite-Horizon Online Optimization

To overcome the conservativeness of an open-loop con-
trol, we use online optimization to generate the control
signals. Specifically, at each time t € Z=, we compute
the control us so as to minimize a finite-horizon criterion
of the form

t+T—1
Z Cs (JIS, Us, ds) + qt+T(xt+T)

s=t

t t+T—1
- Z ns(ns) — Z ps(ds) (4)

s=t—L s=t—L

under worst-case assumptions on the unknown system’s
initial condition x;_j,, unmeasured disturbances d, and
measurement noise ng, subject to the constraints im-
posed by the system dynamics and the measurements y,
collected up to the current time t.

For computational tractability, in (4) we have replaced
the infinite summations that appeared in (2) by finite
forward and backward horizon lengths. In particular,
(4) includes T € Zx; future terms of the running cost
¢s(s, us,ds), which recede as the current time ¢ ad-
vances, and L + 1 € Zx1 past terms of the noise penalty
term ns(ns). The function g7 (zr4+7) acts as a terminal
cost to penalize the “final” state at time ¢ 4+ T'.

Since the goal is to optimize (4) at the current time ¢ to
compute the control inputs at times s > t, there is no
point in penalizing the running cost ¢, (s, us, ds) for past
time instants s < ¢, which explains the fact that the first
summation in (4) starts at time ¢. There is also no point
in considering the values of future measurement noise at
times s > ¢, as they will not affect choices made at time
t, which explains the fact that the second summation in
(4) stops at time ¢. However, we do need to consider all
values for the unmeasured disturbance dg, because past
values affect the (unknown) current state x;, and future
values affect the future values of the running cost.

We denote the sets of non-negative real numbers and
non-negative integers as R>g and Zs(, respectively.
Given a discrete-time signal z : Z>9 — R” and two
times tg,t € Zzo with ¢y < ¢, we denote by 2.+ the
sequence {zi,, Zto+1, ---, 2t} With a slight abuse of no-
tation, we write z4,.+ € Z to mean that each element of
the sequence z;,.; belongs to the set Z.

This notation allows us to re-write (4) as

Jt(l“t—L,Ut—L:t-i-T—l,dt—L:t+T—1,yt—L:t) =

t+T1T—1
Z CS('rSa Us, dS) + Qt+T(xt+T)
s=t
t t+T—1
- Z s (ys _gs(xs)) - Z ps(ds), (5)
s=t—L s=t—L

which emphasizes the dependence of (5) on the un-
known initial state x;_r, the unknown disturbance in-
put sequence d;_r,.¢+7—1, the measured output sequence
Y+ 1..t, and the control input sequence u;_r.t+7_1. Re-
garding the latter, one should note that w;_r.;y7—1 is
composed of two distinct sequences: the (known) past
inputs us_r.+1 that have already been applied and the
future inputs us.¢+r—1 that still need to be selected.

At a given time ¢t € Z>r, we do not know the value of
the variables x;_r, and d;_r.;+7—1 on which the value of
the criterion (5) depends, so we optimize this criterion
under worst-case assumptions on these variables, leading
to the following min-max optimization

~ min _ max
U ppr—1)tEU Ty L|tEX,

di_p.t4+7—11t€D,
ﬁt—L:t\tEN

Ji (xt_L\t, Ut—L:t—1, Ut 4T —1]t> dt—L:t+T—1\t7 yt—L:t)a
(6)

where the arguments ut 1,41, Uy 171} to the function
Ji(+) in (6) correspond to the argument wu; r.;+7—1 in
the definition of J;(-) in the left-hand side of (5). When
interpreting (6), one should view ., p_1)s € U as the
optimization variables for the (outer) minimization, and
Ty € X, th,L:HT,Ht € D as the optimization vari-
ables for the (inner) maximization. The variables fi;_r,.;
are not independent optimization variables as they are
uniquely determined by the remaining optimization vari-
ables and the output equation:

Nejt = Ys — 9s(Tse), Vse{t—Lt—L+1,... 1}
Consequently, the condition 7,1, € N can simply be
regarded as a constraint on the remaining optimization
variables for the (inner) maximization.

The subscript .|; in the optimization variables that ap-
pear in (6) emphasizes that this optimization is repeated
at each time step t € Zx¢. At different time steps these
optimizations typically lead to different solutions which
generally do not coincide with the real control input, dis-
turbances, and noise. We can view the optimization vari-
ables &;_p|; and cit_L:tJrT_l‘t as (worst-case) estimates
of the initial state and disturbances, respectively, based



on the past inputs u;_ .+ 1 and outputs y;_r.; available
at time t.

Inspired by MPC, at each time ¢, we use as the control
input the first element of the sequence

ok N e Ak Ak Ak
Ugypr—1ye = {03 Uypre Qo - - Uyr_qp) €U
that minimizes (6), leading to the following control law:

Ut = ﬁ’:;]t’ vt = 0. (7)
The relationship between this combined estimation and
control approach and standard forms of MPC and MHE
is discussed in Copp & Hespanha (2014).

To simplify the presentation, at this point we define a
shorthand notation for the optimization variables as fol-
lows: @ = Uppyr e, d = di L7 18 X = Lo L)t
We also define a shorthand notation for the following se-
quences of known past inputs and outputs, respectively:
U= Ut—L:t—1, Y = Yt—L:t-

This new notation, as well as removing the dependent
optimization variables f;_ 1., allows us to re-write (6) as

min max.J;(%,u,1,d,y). (8)
el XeX,
deD

Moreover, we define the variables that minimize (8) as

@* € U and the variables that maximize (8) as d* € D
and X* € X.

This new notation will be used for the remainder of the
article until the Appendix where more explicit notation
is required for the proofs.

3 Closed-Loop Boundedness and Tracking

In this section, we show that the control law (7) leads
to boundedness of the state of the closed-loop system
under appropriate assumptions, which we discuss next.

A necessary assumption for the implementation of the
control law (7) is that the outer minimization in (8)
leads to finite values for the optima that are achieved
at specific sequences * € U, t € Z=q. However, for
the stability results in this section we actually ask for
the existence of a saddle-point solution to the min-max
optimization in (8), which is a common requirement in
game theoretical approaches to control design (Basar &
Olsder, 1995):

Assumption 1 (Saddle-point) The min-maz opti-
mization in (8) always has a saddle-point solution for
which the min and max commute. Specifically, for every

time t € Zx, past control input sequence uy_r.;—1 € U,
and past measured output sequence yi—_r.4 € Y, there ex-
ists a finite scalar J;* € R, an initial condition X* € X,

and sequences 0* € U, d* € D such that

Jt* = Jt(f{*uuuﬁ*ua*vy)

= max Ji(%,u, 0%, d,y) (9a)
ReX,
deD

= min Jt(i*vuv ﬁva*7y) (gb)
aeld

]

In general, J;* depends on the past outputs and control
inputs, so we could write J;*(u,y) to emphasize this de-
pendence. For simplicity, however, we use J;* through-
out the paper to denote the optimal value of the cost
function Ji(-).

Assumption 1 presumes an appropriate form of ob-
servability/detectability —adapted to the criterion

Ziif_l ¢s(xs, us,ds) because (9a) implies that, for ev-
ery initial condition X € X, disturbance sequence de D,
and resulting state trajectory & _r.t+7,

Ct('itv ﬂ;ta dt\t) <

t+T1T—1 R t
']t* + Z ps(ds\t) + Z Ns (ys — gs(i“s))
s=t—L s=t—L

This means that we can essentially bound the size of the
current state using past outputs and past/future input
disturbances. In fact, for linear systems and quadratic
costs, Assumption 1 is satisfied if the system is observ-
able and the weights in the cost function are chosen ap-
propriately (Copp & Hespanha, 2016b).

To establish state boundedness under the control (7) de-
fined by the finite-horizon optimization criterion (5), one
needs two additional assumptions regarding the system
dynamics and the terminal cost g;47(-).

Assumption 2 (Observability) There  exists a
bounded set Npre < R™ such that, for every time
t € Z=q, every state Ty_r.4 € X, and every disturbance
and noise sequence, (ith:t €D and Ny_r.. € N, that are
compatible with the applied control input us, s € Z=o,
and the measured output ys, s € Z=q, in the sense that

if?5+1 = fs(j?Sa Us, ds)v Ys = gs(js) + s, (10)
Vs e {t—L,t—L+1,...,t}, there exists a “predeces-
sor” state estimate Ty_5_1 € X, disturbance estimate

th,L,l € D, and noise estimate Ny 1 € Npre such that
(10) also holds for time s =t — L — 1. O



In essence, Assumption 2 requires the past horizon
length L to be sufficiently large so that, by observing the
system’s inputs and outputs over a past time interval
{t—L,t—L+1,...,t}, one obtains enough information
about the initial condition z;_; so that any estimate
Z¢—r, that is compatible with the observed input/output
data is “precise”. By “precise,” we mean that if one
were to observe one additional past input/output pair
Up—1,—1,Yt—1,—1 just before the original interval, it would
be possible to find an estimate z; 1 for the “prede-
cessor” state x;_r_1 that would be compatible with the
previous estimate Z;_p,, that is,

Zi—r = ficn—1(&—p—1, u—r—1,di—r—1).

This “predecessor” state estimate Z;_y,_1 would also be
compatible with the measured output at time t — L — 1
in the sense that the output estimation error lies in the
bounded set Npye:

Y11 — Gt—1-1(Zt—1-1) € Npre. (11)

We do not require the bounded set Npre to be the same
as the set V' in which the actual noise is known to lie. In
fact, the set Npe where the “predecessor” output error
(11) should lie may have to be made larger than A to
make sure that Assumption 2 holds. For linear systems,
it is straightforward to argue that Assumption 2 holds
provided that the matrix

C
CA

CAE

is full column rank and the set Npre is chosen sufficiently
large. For nonlinear systems, computing the set Npye
may be difficult, but fortunately we do not need to com-
pute this set to implement the controller.

Remark 1 (Choosing length of L) Although com-
puting the set Npre is not required, how large Nopre needs
to be is essentially determined by the length of the back-
wards horizon L. As the length of L is increased, equa-
tion (10) provides more constraints on the estimates
which leads to better estimates and, therefore, a neces-
sarily smaller set Nprc. In addition, as is discussed later
after (17), a smaller bound on the norm of the state x
may be achieved as L is increased. Therefore, larger L
is generally better, but increasing L also increases the
computation required to solve (8) as the number of op-
timization variables increases as well. Thus, a heuristic
for choosing L is to make it as large as possible given
available computational resources.

Assumption 3 (ISS-control Lyapunov function)

The terminal cost ¢¢(-) is an ISS-control Lyapunov func-
tion, in the sense that, for every t € Z=qy, x € X, there
exists a control u € U such that for all d € D

qt+1 (ft(xa U, d)) —q(z) < —c(z,u, d) + p(d).  (12)
U

Assumption 3 plays the role of the common assumption
in MPC that the terminal cost must be a control Lya-
punov function for the closed-loop (Mayne, Rawlings,
Rao & Scokaert, 2000). In the absence of the disturbance
d, (12) would mean that ¢;(-) could be viewed as a control
Lyapunov function that decreases along system trajec-
tories for an appropriate control input u (Sontag, 1999).
With disturbances, ¢;(-) needs to be viewed as an ISS-
control Lyapunov function that satisfies an ISS stability
condition for the disturbance input d and an appropri-
ate control input u (Liberzon, Sontag & Wang, 2002).

Theorem 1 (Cost-to-go bound) Suppose that As-
sumptions 1, 2, and 3 hold. Along any trajectory of the
closed-loop system defined by the process (1) and the
control law (7), we have that

=0
t t
+ > ms(ne)+ Y ps(ds), VtEZzp, (13)

for appropriate sequences do.+—1 1 € D, Ngt_r-1 €

Nprc- U

The terms Zz;é_l ns(Ns) + Zi;é_l ps(ds) in the right
hand side of (13) can be thought of as the arrival cost
that appears in the MHE literature to capture the qual-
ity of the estimate at the beginning of the current esti-
mation window (Rao et al., 2003).

The proof of Theorem 1 is given in Appendix A.1. Next
we discuss the implications of Theorem 1 in terms of es-
tablishing bounds on the state of the closed-loop system,
practical stability, and the ability of the closed-loop to
asymptotically track desired trajectories.

3.1 State boundedness and practical stability

When we select penalty functions in the criterion (5),
for which there exists a class K, function «(-) and class
K functions ! 3(-),d(+) such that

LA function o : Rxg — Rxo is said to belong to class K
if it is continuous, zero at zero, and strictly increasing and
is said to belong to class K, if it belongs to class K and is
unbounded.



ce(@,u,d) = a(lz]),  me(n) < B(Inf), pe(d) < o(]d]),
VreR"™ ueR"™, deR" neR",

we conclude from (13) that, along trajectories of the
closed-loop system, the following inequality holds for all
te Z;LI

t—L—1 t—L—1

a(lz) < JF+ ), BUAsD + >, d(ldsl)
s=0 =0
t

t
+ Blllnsl) + 25 8(ldsl).  (14)

s=t—1L s=t—L

Formula (14) provides a bound on the state when the
future noise and disturbance signals are “vanishing,” in
the sense that

o} o}

B(lnsll) < oo,

s=t—L s=t—L

o(|lds ) < o0

Theorem 1 also provides bounds on the state for non-
vanishing noise and disturbances when we use exponen-
tially time-weighted functions ¢;(-), m:(-), and p.(-) that
satisty

ci(z,u,d) = X" ta(||z)), (15a)
ne(n) < AB(In]), (15b)
pe(d) < A*o(|d]), (15¢)

for all z € R, u € R™,d € R",n € R™ and some
A € (0,1). In this case, we conclude from (13) that for
all t e Z;L,

a(flz:]) < Ir
—L—-1 t—L—1
Z N7 Bl + Y5 AEa(ds])
s=0 s=0
t t

+ X7 B(lns]) +
s=t—L s=t—L

X5 (ds)- - (16)

Therefore, x; remains bounded because n, € N, ng €
Npres ds € D, ds € D, and the three sets N, Npe, and D
are bounded. More specifically, if the noise and distur-
bances are uniformly bounded such that, for all s > 0,

BlI7s]) < @ Bllnsl) < a, 8(lds]) < b, 8(lds]) < b

where a, a, B, and b are finite scalars, then an analytical
upper bound can be computed for a(||z;[|), using the
formula for geometric series, and is given by

alllz]l) < X'JE

@+ b)(%) (ot b)(%). (17)

Moreover, the terms in the right-hand-side of (17) that
depend on n and d can be made arbitrarily small by in-
creasing L. The first term in the right-hand-side of (17)
may initially be large as L is increased, but it exponen-
tially decays to a small value as t — o0. Finally, if the
true noise and disturbances vanish asymptotically, then
the terms in the right-hand-side of (16) that depend on
ns and d, converge to zero as t — 0. Therefore, ||z, | con-
verges to a small value as t — o0 when the true noise and
disturbances vanish asymptotically and the backwards
horizon is chosen arbitrarily large. We have proved the
following;:

Corollary 1 Suppose that Assumptions 1, 2, and 3 hold
and also that (15) holds for a class K., function «af-),
class K functions 3(-),9(+), and A € (0,1). Then, for ev-
ery initial condition xo, uniformly bounded measurement
noise sequence no., and uniformly bounded disturbance
sequence dy.¢, the state x; remains uniformly bounded
along the trajectories of the process (1) with control (7)
defined by the finite-horizon optimization (6). Moreover,
when dy and ny converge to zero ast — o0, the backwards
horizon L can be chosen sufficiently large to ensure that
the state x; converges to an arbitrarily small value as
t — 0. O

Remark 2 (Time-weighted criteria) The exponen-
tially time-weighted functions (15) typically arise from
a criterion of the form

t+T—-1

2 A fe(ws, us, ds) + qerr(Te4T)
s=t
t+T—1

= 3 A = Y A ()

s=t—L s=t—L

that weight the future more than the past. In this case,
(15) holds for functions a(-), (), and 6(-) such that
c(z,u,d) = a|z]), n(n) < B(Inl), and p(d) < é(|d]),

]

Ve, u,d,n.
3.2 Reference tracking

When the control objective is for the state x; to follow
a given trajectory z;, the optimization criterion can be
selected of the form

t+T-1

Z A ¢(x
s=t

s — Zs, Us, ds) + Gry7 (Tegr — Ze41)
t+T—1

— D1 ATnng) = D) A p(ds)

s=t—L s=t—L

with c(x — z,u,d) = o(||z — z|), Y, u, d for some class
K, function o and A € (0, 1). In this case, we conclude
from (13) that, for all t € Z> .,



afllze = ze]) < AJE
t—L—1 t—L—1

Z )\ts 2 /\ts

t t
+ > AT+ DD AT
=t =t—

s=t—L s L

which allows us to conclude, from Corollary 1, that x;
converges arbitrarily close to z; as ¢ — o0 when both
n and d; are vanishing sequences and L is chosen suffi-
ciently large. Similarly, if these noise and disturbance se-
quences are “ultimately small”, the tracking error x; — z;
will converge to a small value.

4 Computation of Control by Solving a Pair of
Coupled Optimizations

To implement the control law (7) we need to find the
control sequence G* € U that achieves the outer min-
imization in (8). In view of Assumption 1, the desired
control sequence must be part of the saddle-point de-
fined by (9a)—(9b). It turns out that it is more conve-
nient to use the following equivalent characterization of
the saddle point:

_Jt* = Enl)? _Jt(ivuv ﬁ*7d7Y) (183)
XEA,
deD

JF = min J,(%*, u, 1, 51*, y) (18b)
aeld

where we introduced the “—” sign in (18a) simply to ob-
tain two minimizations, instead of a maximization and
one minimization, which will somewhat simplify the pre-
sentation.

Since the process dynamics (1) has a unique solution for
any given initial condition, control input, and unmea-
sured disturbance, the coupled optimizations in (18) can
be re-written as

—Jf= _ min
(d,%)eD[u,u*]
t+T—1 .
- Z cs(Ts, 05, ds) — G (Teyr)
s=t
t t+T—1 R
+ Z 775 s gs ))+ Z ps( 5), (193)
s=t—L s=t—L
JF = min
(ax)ed[z}  d*]
t+T—1
Z cs(Ts, s, d¥) + qepr (Fepr)
s=t
t t+T—1
- Z ns(ys_gs(js))_ Z (d*) (lgb)
s=t—L s=t—L

where X = ‘i.th:t+T|t7 X = i’t,
and

o~ __ K
L41:t+T|ty Lt—L = Ty_p,s

Dlu, a*] = {(a,i) .deD, xe A,
Top1 = fo(Ts,us,ds), Vs € {t — L, ...t —1},

Tort = fo(Ts, 0¥, ds), Vs € {t, . t+T—1}}

(20a)
Ulzr_,,d*] = {(ﬁ,i) el ke X,
Ti_p1 = fie L(ff Ly Ut— L,sz L)
Fopr = fs(Tsyus,d¥) Vs e {t —L+1,..,t —1},
Toy1 = fol@s, tis,d*),Vs € {t, .. t+T—1}}.
(20b)

To obtain the optimizations in (19), we introduce the val-
ues of the state from time ¢t — L 41 to time ¢t + T, that are
constrained by the system dynamics, as additional opti-
mization variables in each of the optimizations in (18).
This is a common technique used when solving optimiza-
tion problems numerically (Betts, 2010). While this in-
troduces additional optimization variables, it avoids the
need to explicitly evaluate the solution to (1) that ap-
pears in the original optimizations (18) and that can be
numerically poorly conditioned, e.g., for systems with
unstable dynamics.

While the numerical method discussed in the next sec-
tion can be used to solve either (18) or (19), our numer-
ical example uses the latter because it generally leads to
simpler optimization problems. Therefore we focus our
discussion on that approach.

5 Interior-Point Method for Minimax Problems

The coupled optimizations in (18) or (19) can be viewed
as a special case of the following more general problem:
Find a pair (u*, d*) € U[d*] x D[u*] that simultaneously
solves the two coupled optimizations

ok %

fw*,d )—uermg*]f(u d*), (21a)
% 7%\ _

g(u*,d*) = dergig*]g(u ,d), (21b)

with

U] = {u e RN : F,(u,d)

0, Gu(u,d) =0}, (22a)
Dlu] = {d e RN : Fy(u,d) =0

=
>0, Ga(u,d) = 0}, (22)
for given functions f : RV x RV e R, g : RN x RN¢
R, F), : RV x RNe — RMu By . RNv x RNa —» RMa,
Gy RNu x RNe — REw G, @ RNv x RNe — REq,
To map (19) to (21), one would associate the vectors
u € RV« and d € RM in (21) with the sequences in



the sets D[] and U[-] in (20). In this case, the equality
constraints in (22) would typically correspond to the
system dynamics, and the inequality constraints in (22)
would enforce that the state, control, and disturbance
signals belong, respectively, to the sets X', U, and D
introduced below (1).

Remark 3 The optimization in (21) is more general
than the one in (19) in that the function being minimized
in (19a) is the symmetric of the function being minimized
in (19b), whereas in (21), f and g need not be the sym-
metric of each other. While this generalization does not
appear to be particularly useful for our output-feedback
MPC application, all the results that follow do apply to
general functions [ and g and can be useful for other ap-
plications.

The following duality-like result provides the motivation
for a primal-dual-like method to solve the coupled min-
imizations in (21). It provides a set of conditions, in-
volving an unconstrained optimization, that provide an
approximation to the solution of (21).

Lemma 1 (Approximate equilibrium) Suppose
that we have found primal variables 4 € RN",J € RN«
and dual variables S\fu e RMu, j\gd € RMa py, €
RE« D,y € REa that simultaneously satisfy all of the
following conditions?

Gu(i,d) =0,  Ggla,d) =0, (23a)
5\f'u,Zou 5\gd>07 Fu(’&, Cz) = 07 Fd(au Cz) = 07 (23b)
Lf(’ﬁ,cz, S\fu,ﬁfu) = min Lf(u,ci, j\fu,ﬁfu),

N N (23¢)
Ly(t,d, Aga, Vgq) = Jnin Ly(a,d, Aga, Vga)

where, for all u, d, \, and v,

Li(u,d,Apy,Vpu)=f(u,d) = Apo Fy(u,d) + v, Gy (u,d),
Ly(u,d, A gasvga) = g(u,d) — Aga Fa(u,d) + vgaGq(u,d).

Then (@,d) approzimately satisfy (21) in the sense that

f(t,d)<ef+ min f(u,d), (24a)
weld[d]
g(a, A)<eg+d£%i[nﬁ] g(a,d), (24b)
with
€= S\quu(ﬁ,d), €gi= quFd(ﬁ,ci). (25)
O

2 Given a vector € R" and a scalar a € R, we denote by
r=a the proposition that every entry of x is greater than or
equal to a.

The proof of this Lemma can be found in Appendix A.2.
5.1 Interior-point primal-dual equilibria algorithm

The proposed method consists of using Newton itera-
tions to solve a system of nonlinear equations on the
primal variables @ € RN“,cZ € RV and dual variables
Aju € RMe Xy € RMa, pp, € REv g € RE4 intro-
duced in Lemma 1. Throughout this section, we ask that
L and L, are continuously differentiable with respect
to uw and d, respectively (see Remark 5 below). The spe-
cific system of equations consists of:

(1) the first-order optimality conditions for the uncon-
strained minimizations in (23c)?:

VaLy(ti,d, Agd, Dga) = On,; (26b)

(2) the equality conditions (23a); and
(3) the equations*

Fu (ﬁ’a CZ) © 5\ju = ,UJ]-Mua (273“)
Fa(ii,d) © Aga = plag,, (27h)

for some p > 0, which leads to

e = My, €g = Mg

Since our goal is to find primal variables , d for which
(24) holds with e; = ¢, = 0, we shall make the variable
1 converge to zero as the Newton iterations progress.
This is done in the context of an interior-point method,
meaning that all variables will be initialized so that the
inequality constraints (23b) hold, and the progression
along the Newton direction at each iteration will be se-
lected so that these constraints are never violated.

The specific steps of the algorithm that follows are based
on the primal-dual interior-point method for a single
optimization, as described in Vandenberghe (2010). To
describe this algorithm, we define

z = [ﬂ d]l’ A= [j‘fu ;\gd]l’ V= [ﬁfu ﬁgd]lv
G(z) = G“(?’CE)] , FE)= F“(?’Cf)] ,
Gd(u, d) Fd(u, d)

which allows us to re-write (26), (23a), and (27) as

VuLi(z,Av) =0n,, Valg(z,\,v)=0n,, (28a)

3 Given an integer M, we denote by 0a and by 1, the
M-vectors with all entries equal to 0 and 1, respectively.
1 Given two vectors x,y € R" we denote by z ®y € R™ and

by @y € R" the entry-wise product and division of the two
vectors, respectively.



G(2) = Ok, + Ky AOQF(2) = plap,+m,,  (28D)
and (23b) as
AZ 00,0, F(2) 2 00,40, (28¢)

5.1.1  Primal-dual optimization algorithm:

Step 1. Start with estimates zg, Ao, 1o that satisfy the
inequalities A\g = 0, F'(z9) = 0 in (28c¢), and set pg = 1
and k = 0. It is often a good idea to start with a value
for zo that satisfies the equality constraint G(zp) = 0,
and Ao = puolas, +m, @ F(20), which guarantees that we
initially have \g ® F'(z0) = molas, +m,-

Step 2. Linearize the equations in (28a) around a cur-
rent estimate zx, A\g, Vg, and uy leading to

ViueLg(-)  VaLg(-) VurLg(:) Ao
de o()  VarLg() VaaLg(:) Ay
G(zk) 0 0 Ax
diag()\k)VzF(zk) 0 diag[F'(z1)]
VoL (zk, Ao, Vi)
_ VaLg(zk, Ak, k) ()

G(2k)
F(zr) © A\ — il

where L (2, A, Vi) and Lg(z, Ak, v) have been com-
pactly written as Lf(-) and Lg(-), respectively.

Step 3. Find the search direction [ Az, Av, AX, ]' by solv-
ing (29).

Step 4. Update the estimates along the search direction
so that the inequalities in (28¢) hold strictly:

21 = 2k + @Az,
Vg1 = Vi + 0 Avg,
)\k+1 = A\ + as AN

where
s = Min{Qprimal; Adual },
and
Qprimal = IMAax {a €[0,1]: F(zx + Azs) > },
Qldual = Max {a €[0,1]: \x + % A = }
Also update u according to
M1 = Lk,

where the positive scalar ¢ is chosen such that £ < 1.
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Step 5. Repeat from Step 2 with an incremented value
for k until

IVuLg(2r, Ay vi)| < €u,  [|VaLg(zr, Ak, )| < €q,

(30a)
|IG(z1)| <eq,  ANF(zk) < €gap,  (30D)
for sufficiently small tolerances €, €q, €G, €gap- |

Remark 4 For additional computational efficiency, an
affine scaling step may be included after Step 2 in the
algorithm above. In this case, an affine scaling direction
[az, av, ax, ] is found by solving (29) for uy, = 0.

Then scalings are selected so that the inequalities in (28¢)
are not violated along the affine scaling direction:

Qg = min{aprimalv adual}a
where

Qtprimal = Max {a € [0,1] : Fzr + alAz,)

>0},

] A+ aAN, O}.

O dual = ImMax {a E

Define the following estimate for the
affine scaling direction

“quality” of the

o= (F(Zk + aprimalAZa)l(/\k + adualA/\a))6
. F(Z;g)')\k ’

where 0 is a parameter typically selected equal to 2 or
3. Note that the numerator F(zi + 0primaidze) (Ae +
QdualAN,) is the value one would obtain for N F(z) by
moving purely along the affine scaling directions. A small
value for o thus indicates that a significant reduction in
Lk 18 possible.

Finally, the new search direction [ Az, Av} AX, ]' is found

by solving (29) for py = U%%, and the algorithm

continues as above with Step 4. O

When the functions Ly and L, that appear in the un-
constrained minimizations in (230) have a smgle sta-
tionary point that corresponds to their global minimum,
termination of the Algorithm 5.1.1 guarantees that the
assumptions of Lemma 1 hold [up to the tolerances in
(30)], and we obtain the desired solution to (21).

The desired uniqueness of the stationary point holds,
e.g., when the function f(u,d) is convex in u, g(u,d) is
convex in d, F,(u,d) is concave in u, F;(u,d) is concave
in d, and G, (u, d) is linear in u, and G4(u, d) is linear in
d. However, in practice the Algorithm 5.1.1 can find so-
lutions to (21) even when these convexity assumptions
do not hold. For problems for which one cannot be sure



whether the Algorithm 5.1.1 terminated at a global min-
imum of the unconstrained problem, one may run sev-
eral instances of the algorithm with random initial con-
ditions. Consistent results for the optimizations across
multiple initializations will provide an indication that a
global minimum has been found.

Remark 5 (Smoothness) Algorithm 5.1.1 requires all
the functions f, g, Fy, Fq, Goy, G4 to be twice differentiable
for the computation of the matrices that appear in (29).
Howewver, this does not preclude the use of this algorithm
in many problems where these functions are not differ-
entiable because it is often possible to re-formulate non-
smooth optimizations into smooth ones by appropriate
transformations that often introduce additional optimiza-
tion variables. Common examples of these transforma-
tions include the minimization of criteria involving £,
norms, such as the “non-differentiable £1 optimization”
min{”Amxnx —blley +--rxeR™, .. }
which is equivalent to the following constrained smooth
optimization

min{v'1m+---:xeR",veRm,—v$A:1:—b<v,...};
and the “non-differentiable {5 optimization”
min {|Apmxn® —ble, +---:xeR", ...}
which is equivalent to
min {v+--:2eR",v>0,0" > (Az —b)'(Az —b),... }.

More examples of such transformations can be found,
e.g., in Grant & Boyd (2008); Nesterov (2005). O

6 Numerical Example

In this Section we discuss a numerical example using
the problem framework introduced in Section 2 and find
solutions via simulation using the interior-point method
described in Section 5.

Example 1 (Nonlinear Pursuit-Evasion) In  this
example a two-player pursuit-evasion game is consid-
ered where the pursuer is modeled as a nonholonomic
unicycle-type vehicle, and the evader is modeled as a
single-integrator. The measured output is the positions
of the pursuer and evader. The orientation of the pur-
suer is not measured. The models can be written in
discrete-time as follows:

Piy1 = pi +vcos(fy),
Pi = pi +usin(6y),
Orr1 = 0p + uy,

Pursuer :

(31a)
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11 1
Ziy1 =2 +dy,

Fvader :
: 2 2 2
Ziy1 = 2 +dy,

(31b)

Output : ye = [t 2] + e
The positions of the pursuer and the evader at time t are
denoted by py = [p; p?]' € R? and z, = [z} 2?]" € R?,
respectively, and the orientation of the pursuer at time t
is denoted by 0, € [—m, m]. The full state for this example
at time t can then be defined as x; = [p} 0; 2] € R? x
[—7, 7] x R2. The inputs for the pursuer and evader at
time t are denoted by u; € U and d; = [d} d?]' € D,
respectively, where the constraint sets are defined asU =
{ur € R : |ug| < Upmaz} and D = {d; € R? : |di]» <
dimaz}- The measurement noise is denoted by ny € R*. In
this example, the noise is unconstrained, i.e., N' = R*;
however, the weight A, in the cost function (32) below
essentially penalizes large noise.

(31c)

The evader’s goal is to make the distance between its
position z; and the position of the pursuer py as large
as possible, so the evader wants to maximize the value
of |zt — pi|2. The pursuer’s goal is to do the opposite,
namely, minimize the value of | zy—p¢l|2. The pursuer and
evader try to achieve these goals by choosing appropriate
values for us and dy, respectively. In the context of the
problem described in Section 2, we regard the input for
the pursuer as the control signal and the input to the
evader as a disturbance. This motivates considering a
cost function of the form

t+T—1 t+T—1
T()= D) lzs—psla+Xx D) lusl
s=t s=t
t t+T—1
—An Z HnsH% — A Z Hdsugv (32)
s=t—L s=t—L

where Ay, A, and \g are positive weighting constants.

Figures 1 and 2 show simulation results from solving the
optimization

min
Ut.t4T—1EU

max
T LEX,
di—r.t+7-1€D

Ji(*) (33)

at each time step t, where Jy(-) is the cost function
given in (32), and the optimization is solved using Algo-
rithm 5.1.1. For this nonlinear example, we can verify
numerically that (9) in Assumption 1 holds along closed
trajectories by comparing the values of the two coupled
optimizations given in (19a) and (19b).

In this simulation, the parameters for the model (31) and
the cost function (32) are chosen as L = 8, T = 12,
v = 0.1, Umaz = 0.5, dmaz = 0.06, Ay = 8, \g = 100,



and A, = 1000. The output measurements are subjected
to normally distributed random noise ny ~ N'(0,0.0052).

Figure 1 shows the estimates of the pursuer’s and
evader’s positions computed by solving the optimization
(33) at every time t. The initial state of the pursuer is
[ph 0o]’ = [0 0 0], and the initial state of the evader is
zo = [0.50.5]". The simulation is initialized with zero in-
put for the pursuer (i.e. uy = 0) for the first L = 8 time
steps after which time the optimization (33) is solved at
every time step t, and the optimal input uf is applied for
the rest of the simulation. The evader applies an input
of di = [0.05 0] until time t = 55 after which time the
optimal computed evader’s input dff is applied for every
successive time step t. The inputs that are applied are
shown in Figure 2. We see that several times throughout
the simulation the input constraints for both the pursuer
and evader are active.

1.2 T T T T T T T
— pursuer
1 —e—evader
0.8 1
0.6 =
NN 0.4 i
"
0.2 4
0 -
-0.2 -
-0.4 s
-0.6 1 1 1 1 1 1 1
0 0.5 1 15 1 2 1 25 3 35 4
p I z
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Fig. 2. Inputs for the pursuer and evader from Example 1.

Because the maximum speed of the evader (dp,q, = 0.06)
is less than the speed of the pursuer (v = 0.1), the pursuer
is always able to catch up to the evader, but the evader
takes advantage of its more agile (integrator) dynamics by
making sharp turns and forcing the unicycle-type pursuer
to make loops at its mazimum turning rate.

This simulation was performed on a laptop with an Intel®
Core™ 77 Processor and used Algorithm 5.1.1 imple-
mented in C code to compute solutions at each time step.
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The optimization involved 157 optimization wvariables,
100 equality constraints, and 104 inequality constraints,
and the average time to compute the solution at each time
step was 1.5 ms. The minimum and maximum computa-
tion times were 0.46 ms, and 4.3 ms, respectively. There-
fore, solutions can be computed extremely efficiently even
for this nonlinear and nonconvex example.

7 Conclusions and Future Work

We presented an output-feedback approach to nonlin-
ear MPC with MHE. Solutions were found by combining
control and state estimation into a single min-max opti-
mization. We showed in Theorem 1 and Corollary 1 that
the state of the system remains bounded, and a bound on
the tracking error for reference tracking problems can be
established. These results required that a saddle-point
equilibrium exists (which presumes standard observabil-
ity /detectability) for the min-max optimization prob-
lem, that an ISS-control Lyapunov function is included
as a terminal cost, and that the backwards horizon L is
sufficiently large in order to find a “predecessor” state
estimate that is consistent with the dynamics.

Next we presented a primal-dual interior-point algo-
rithm that can be used to solve general nonlinear min-
max optimization problems. We validated this algo-
rithm by showing simulation results for a nonlinear and
non-convex example. Further examples can be found in
the technical report by Copp & Hespanha (2015) and
the book chapter by Copp & Hespanha (2016a).

Future work may involve a convergence analysis of Al-
gorithm 5.1.1. The development of similar algorithms
to solve these types of optimization problems and trade
offs between methods should be investigated. For exam-
ple, a Barrier interior-point algorithm could be devel-
oped which may be more robust than the primal-dual
algorithm for non-convex poorly conditioned problems.

A Proofs
A.1  Proof of Theorem 1

Before proving Theorem 1, we introduce a key technical
lemma that establishes a monotonicity-like property of
the sequence {J;* : t € Z>o} computed along solutions
to the closed loop.

Lemma 2 Suppose that Assumptions 1, 2, and 3 hold.
Along any trajectory of the closed-loop system defined by
the process (1) and the control law (7), the sequence {J* :
t € Z=o}, whose existence is guaranteed by Assumption
1, satisfies

Vit e Z;L
(A1)

JE = I <m—p(fu—r) + pt—L(CZt—L);



for appropriate sequences do.+_1 1 € D, Ngt_r-1 €

pre- |
The following notation will be used in the remainder of
the proof to denote the solution to process (1): given a
control input sequence u;_r.;—1 and a disturbance input
sequence d; 1.t 1, we denote by

<P(t;t —L,x_p,us—r4—1, dt—L:t—l)

the state z; of the system (1) at time ¢ for the given
inputs and initial condition x;_r.

Proof of Lemma 2. From (9b) in Assumption 1 at time
t + 1, we conclude that there exists an initial condi-
tion j:‘—L+1|t+1 € X and sequences d* € D,

t—L+1:4+T|t+1
Ak
A e € N such that

J* = min
t+1 -~
U144+t +1EU

A N
Jt+1(xt_L+1‘t+1u Ut—L4+1:ts Ut 1:44+T |t 415

Ay pgtieris Ye—Laniern). (A2)

On the other hand, from Assumption 3 at time ¢ + T,

with d = d;"JrT‘Hl and

_ —
T=Tpippi41 =

g ok ok 7%
QAT —=LAL2} |1 e B L Tye41)>

we conclude that there exists a control usy 7 € U such
that

qt+T+1 (ft+T(:i:+T|t+l 7at+T7d:+T|t+l)) _Qt+T(i:+T\t+1)

] ~ e 7%
+Ct+T(It+T|t+l7 Ut+T, dt+T\t+1)_pt+T(dt+T\t+1) < 0.

(A.3)

Moreover, we conclude from Assumption 2, that there
exist vectors Z¢_ 1, dy_1, € D, 7y, € N such that

(A.4)

‘%:‘—L+1|t+1 = fth(jthu Ut—L, dth)u

Yeor, = ge—r(T—1) + Ne—1,,

Using now (9a) in Assumption 1 at time ¢, we conclude
that there also exists a finite scalar J; € R and a se-

7k
quence Uy, p_q), € U such that
Jf = max
Ti_L|tEX,

di_p.t4+7—11t€D,
Ne_ 1.4+ €

A Ak 7
Jt(xt—L\ta Ut—L:t—1, ut:t+T—1|t7 dt—L:t+T—1\t7 yth:t)'

(A.5)
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Going back to (A.2), we then conclude that

* o ~ K ~
iy < Jt+1(‘rt7L+1\t+17ut—L‘H:t’ut+1:t+T71|t’ut"l‘T?

d:*L+1:t+T|t+1’yt—L+1:t+1) (A.6)

because the minimization in (A.2) with respect to
Ugy1:047e+1 € U must lead to a value no larger than
what would be obtained by setting w1447 141 =

~ . T
Uy gy AN Uy = Upar

Similarly, we can conclude from (A.5) that

# ~ ~ 7
Ji =z Jt(iEt—L7Ut—L:t—hUt;HT,”t,dt—b

*
dt7L+1:t+Tfl|t+1’ Ye-L:t)

— J.(7 e 1
=J; (xt—L; Ut—L:ts Upy 1 gy 1t di—r,

:7L+l:t+T71\t+17yt—L¢t)’ (A.7)

because the maximization in (A.5) with respect to
Zy_p); and dy_p.4 71} must lead to a value no smaller
than what would be obtained by setting #;_r; = %,

dth\t = CZt—L and dt7L+1:t+T71\t = df—L+1:t+T—1\t+1'
The last equality in (A.7) is obtained by applying the

control law (7).

Combining (A.6), (A.7), and (A.4) leads to

* * ~ 7

Jia = JF < T (frep(Fe—p, ue—p, de— L), U—L 410,
~ g ~ 7%
Ui 1:t4T—1)8> Wt+Ts dt7L+1:t+T|t+l’ yt—L+1:t+1)

~ A % 't
- Jt (:Etha Ut—L:ts ut+1:t+T—1|t7 dtha

:‘—L+1:t+T—1\t+17yt*Lit)' (A.8)

A crucial observation behind this inequality is that both
terms Jyy1(-) and Ji(+) in the right-hand side of (A.8)
are computed along a trajectory initialized at time t — L
with the same initial state T,_; and share the same
control input sequence uz_y, ., and the same

:—L+1:t+T—1\t+1' We
shall denote this common state trajectory by Zs, s €
{t—L,...,t+T}, and the shared control and disturbance
sequences by

ok
Up i1+ T -1t
disturbance input sequence d;_,,d

o
ds — ds\t+1’

- Us
Us =X .,
us\t

The vectors 7 and Jt, 1 have been previously defined,
but we now also define dyyp =

Vse{t—L+1,....t+T —1},

se{t—1L,...,t}
se{t+1,...,t+T—1}.

* i —
dt+T\t+17 Tt+T+1 =

fear (@epr, g, dier), and iig = ys — gs(Z,), 5 € {t —
L,...,t}. All of these definitions enable us to express



both terms J;11(-) and Ji(-) in the right-hand side of
(A.8) as follows:

t+T
1 —JE < Z Cs(Ts, s, ds) + qrar1(TesT41)
s=t+1
t+1 t+T .
- 2 s (ﬁs) - 2 ps(ds)
s=t—L+1 s=t—L+1
t+T—-1 B
- Z Cs(js; ﬁs; ds) - qt+T(jt+T)
s=t
t t+T—1 5
+ Z ns(7is) + Z ps(ds)
s=t—L s=t—L

= coar(Tar, U, dist) + Qa1 (Tras1)
— Qi+ (Ti41) — pear(disr) + 0 (Re—1)
+ pe—r(de—r) — (&g, Ue, dp) — N1 (Rpg1)-

Equation (A.1) follows from this, (A.3), and the fact that
¢(+) and 741 (+) are both non-negative. ]

With most of the hard work done, we are now ready to
prove the main result of this section.

Proof of Theorem 1. Using (9a
conclude that

) in Assumption 1, we

=

_ max
Ti_L|tEX,

di_pit+r—1)0€D,
Ne_L:t|t€
A Ak 7
Je(Te—ppe L1 aut;t_;,_T_l‘tadth:t+Tfl|tayt7L:t)
~ R
ZJe(Tt—p ULt 150y g Ge— Lt Ot 10471, Y—Lit)

~ R
=Jt(Tt—L ULty 1y p 1o Be—Lit Ot 16471, Yt—Lit)-

The first inequality is a consequence of the fact that the
maximum must lead to a value no smaller than what
would have been obtained by setting ;_r; equal to the

true state x;_y, setting di_pt equal to the true (past)
disturbances d;_ 1.+ and setting d;1..+ 71 equal to zero.

The final equality is obtained simply from the use of the
control law (7).

To proceed, we replace J;(+) by its definition in (5), while
dropping all “future” positive terms in c4(-), s>t and
gr+7(-). This leads to

t t

Jt*>ct .’Iit,Ut,dt Z 775 Ng)— 2 Ps (Ag)
s=t—L s=t—L

Note that the future controls LTt disappeared

because we dropped all the (positive) terms involving

14

the value of the state past time ¢, and the summation
over future disturbances also disappeared since we set

all the future Cit+1:t+T—1 to zero.

Adding both sides of (A.1) in Lemma 2 from time L to
time t—1, leads to

t—L—1

TESTE+ ) pslde)+

—L—
Z (), VteZsp. (A.10)
s=0 s=0

The bound in (13) follows directly from (A.9) and (A.10).
|

A.2  Proof of Lemma 1

Proof of Lemma 1. The proof is a direct consequence of
the following sequence of inequalities that start from the
equalities in (23c) and use the conditions (23a)-(23b),
and the definitions (25) to arrive at (24):

flayd) — €5 = Ly(a,d, A pu, 0pu) = DuGuu(@t, d)
= min Lg(u,d, A, D) — 0

u€RNu

= min f(u,d) — /\fu w(u, d) +Vquu(u,cZ)
ueRNu

< max min f(u,d) — A puFu(u, d) + vpuGo(u, d)
>\fu20 Vi ueRNu

< max min f(u,d) — A puFu(u, d) + v G (u, d)
A pu 20,V 50 ueld[d]

= min f(u,d)7
uel [d]

g(1, d) —€g = Ly(u, d /\gd,ng) — gaGa(t, d)

— Ly (i, d, A 0
Jnin Lo (i, d, Agd; Vga) —

min ¢g(4,d) —
deRNd

max min g(a,d) —
Agd/O Vgd deRNd

Ang‘d (ﬁ’a d) + I}gde(ﬂa d)
)\ngd(ﬂv d) + ngGd(’a’v d)

N

< max min ¢(4,d) — A\gaFa(t,d) + vgaGalt, d)
Aga=0,v,q dED[1] ’ ’

d
d]é%lﬁ] g(i,d). u
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